1 |
Which factor is considered a major driver of land cover change contributing to landslides in the Chattogram District?
|
Hill cutting and unplanned urbanization |
|
การตัดเนิน: การกำจัดพืชพรรณและดินออกจากเนินเขาเพื่อการก่อสร้างหรือวัตถุประสงค์อื่นๆ อาจทำให้เนินไม่มั่นคงและเสี่ยงต่อการเกิดแผ่นดินถล่ม
การขยายตัวของเมืองโดยไม่ได้วางแผน: การขยายตัวอย่างรวดเร็วของพื้นที่เมืองไปสู่พื้นที่ภูเขาสามารถนำไปสู่การตัดไม้ทำลายป่า การพังทลายของดิน และการไหลบ่าที่เพิ่มขึ้น ซึ่งทั้งหมดนี้อาจทำให้เกิดดินถล่มได้ |
“การศึกษาปัจจัยที่ทำให้เกิดดินถล่มในเขตอำเภอฉัตรโตแกรม” [ไม่พบเอกสารใน Drive ของคุณ]
"การขยายตัวของเมืองและการเปลี่ยนแปลงที่ดินในเขต Chattogram" [ไม่พบเอกสารในไดรฟ์ของคุณ]
“ผลกระทบฝนถล่มดินถล่มในเขตฉัตรโตแกรม” [ไม่พบเอกสารในไดรฟ์ของคุณ]
“ความเสี่ยงจากการตัดไม้ทำลายป่าและดินถล่มในเขตฉัตรโตแกรม” [ไม่พบเอกสารในไดรฟ์ของคุณ]
“การกัดเซาะชายฝั่งและดินถล่มในเขตอำเภอฉัตรโตแกรม” [ไม่พบเอกสารในการขับรถของคุณ] |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
2 |
What does the ROC value for a model indicate in the context of this study?
|
The accuracy of the model in predicting landslide susceptibility |
|
คำอธิบาย
เส้นโค้ง ROC (ลักษณะการทำงานของตัวรับ) เป็นเครื่องมือกราฟิกที่ใช้ในการประเมินประสิทธิภาพของแบบจำลองการจำแนกประเภท รวมถึงแบบจำลองสำหรับการทำนายความอ่อนแอต่อดินถล่ม เส้นโค้ง ROC พล็อตอัตราบวกที่แท้จริง (TPR) เทียบกับอัตราบวกลวง (FPR) ที่ค่าเกณฑ์ต่างๆ TPR คือสัดส่วนของกรณีที่เป็นบวกซึ่งระบุอย่างถูกต้อง ในขณะที่ FPR คือสัดส่วนของกรณีที่เป็นลบซึ่งจัดประเภทไม่ถูกต้องว่าเป็นบวก
ค่า ROC ที่สูงบ่งชี้ว่าแบบจำลองสามารถแยกแยะความแตกต่างระหว่างพื้นที่เสี่ยงต่อการเกิดดินถล่มและพื้นที่ต้านทานดินถล่มได้ดีกว่า โดยเฉพาะพื้นที่ใต้เส้นโค้ง ROC (AUC) เป็นสถิติสรุปที่แสดงถึงความแม่นยำโดยรวมของแบบจำลอง AUC 1.0 บ่งชี้ถึงความแม่นยำที่สมบูรณ์แบบ ในขณะที่ AUC 0.5 บ่งชี้ว่าแบบจำลองนั้นไม่ได้ดีไปกว่าการเดาแบบสุ่ม |
"การทำแผนที่ความไวต่อการเกิดดินถล่มโดยใช้เทคนิคการเรียนรู้ของเครื่อง: กรณีศึกษาในเขต Chattogram" [ไม่พบเอกสารในไดรฟ์ของคุณ]
"การประเมินประสิทธิภาพของแบบจำลองความไวต่อแผ่นดินไหวถล่มโดยใช้ ROC Curves" [ไม่พบเอกสารในไดรฟ์ของคุณ] |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
3 |
According to the study, what percentage of the Chattogram District's area is highly susceptible to landslides?
|
25-30% |
|
การศึกษาระบุว่าพื้นที่ในเขต Chattogram จำนวนมากมีความเสี่ยงสูงต่อการถล่มดิน โดยเปอร์เซ็นต์ที่พบคือ 25-30% ซึ่งหมายความว่าส่วนที่สำคัญของเขตนี้มีความเสี่ยงสูง ซึ่งเน้นให้เห็นถึงความต้องการในการวางแผนการใช้ที่ดินและกลยุทธ์การจัดการความเสี่ยงในพื้นที่เหล่านี้ |
ทฤษฎีการประเมินความเสี่ยง (Risk Assessment Theory):
ทฤษฎีการประเมินความเสี่ยง ใช้ในการวิเคราะห์และประเมินระดับความเสี่ยงที่เกิดจากปัจจัยต่าง ๆ ที่อาจส่งผลต่อความมั่นคงของดิน การประเมินนี้รวมถึงการศึกษาปัจจัยทางภูมิศาสตร์, สภาพอากาศ, การใช้ที่ดิน และกิจกรรมของมนุษย์เพื่อประเมินความเสี่ยงของการถล่มดิน |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
4 |
How are the logistic regression model's coefficients used in landslide susceptibility mapping?
|
To reflect the contributions of each factor affecting landslides |
|
ในแบบจำลองการถดถอยโลจิสติก ค่าสัมประสิทธิ์แสดงถึงความสำคัญสัมพัทธ์ของตัวแปรอิสระแต่ละตัวในการทำนายตัวแปรตาม ในบริบทของการทำแผนที่ความไวต่อการเกิดดินถล่ม ค่าสัมประสิทธิ์ของแบบจำลองการถดถอยโลจิสติกบ่งชี้ถึงการมีส่วนร่วมของแต่ละปัจจัย (เช่น ความลาดชัน ปริมาณน้ำฝน สิ่งปกคลุมดิน) ต่อความน่าจะเป็นของแผ่นดินถล่มที่เกิดขึ้นในพื้นที่ใดพื้นที่หนึ่ง |
การถดถอยเชิงลอจิสติก ใช้ในการวิเคราะห์และสร้างแบบจำลองความสัมพันธ์ระหว่างผลลัพธ์แบบสองค่าและตัวแปรคาดการณ์หนึ่งตัวหรือมากกว่า สัมประสิทธิ์ที่ได้จากโมเดลเป็นกุญแจในการเข้าใจว่าแต่ละตัวแปรมีอิทธิพลต่อความน่าจะเป็นของผลลัพธ์ (ในกรณีนี้คือการถล่มดิน) อย่างไร แนวทางนี้มีความสำคัญในการสร้างแผนที่ความเสี่ยงที่แสดงพื้นที่ตามอิทธิพลของปัจจัยต่าง ๆ |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
5 |
What is the importance of the Stream Density factor according to the Random Forest model in the document?
|
One of the top five most important factors |
|
ในโมเดล Random Forest ปัจจัยต่าง ๆ ถูกประเมินตามการมีส่วนช่วยในการทำนายความเสี่ยงจากดินถล่ม ปัจจัยความหนาแน่นของลำธารถูกเน้นว่าเป็นหนึ่งในห้าปัจจัยที่สำคัญที่สุด ซึ่งแสดงว่ามีบทบาทสำคัญในการทำนายการเกิดดินถล่ม |
โมเดล Random Forest: โมเดลการเรียนรู้ของเครื่องนี้ประเมินความสำคัญของปัจจัยต่าง ๆ ในการทำนายผลลัพธ์ เช่น ความเสี่ยงจากดินถล่ม ปัจจัยที่มีอิทธิพลอย่างมีนัยสำคัญในการทำนายของโมเดลจะถูกระบุว่าเป็นปัจจัยที่สำคัญ ความหนาแน่นของลำธารในฐานะที่เป็นหนึ่งในห้าปัจจัยที่สำคัญที่สุด เน้นถึงความเกี่ยวข้องและผลกระทบต่อความแม่นยำของโมเดล |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
6 |
According to the document, which machine learning model showed the highest success rate in training data?
|
Random Forest |
|
ในบริบทของการสร้างแบบจำลองความเสี่ยงจากการถล่มดินโดยใช้การเรียนรู้ของเครื่อง โมเดลต่าง ๆ จะได้รับการประเมินสำหรับความมีประสิทธิภาพในการคาดการณ์ผลลัพธ์จากข้อมูลการฝึกอบรม โมเดล Random Forest เป็นที่รู้จักในเรื่องความแข็งแกร่งและประสิทธิภาพสูงในงานการจำแนกประเภท ซึ่งมักจะมีประสิทธิภาพดีกว่าโมเดลอื่น ๆ ในด้านความแม่นยำและอัตราความสำเร็จ |
Random Forest เป็นวิธีการเรียนรู้ของเครื่องที่สร้างต้นไม้ตัดสินใจหลายต้นและรวมผลลัพธ์ของพวกมันเพื่อปรับปรุงความแม่นยำและลดการโอเวอร์ฟิต โมเดลนี้มักจะแสดงผลลัพธ์ที่ดีกว่าในชุดข้อมูลที่หลากหลายเนื่องจากความสามารถในการจัดการข้อมูลที่หลากหลายและจับรูปแบบที่ซับซ้อนได้ดี ทำให้มีอัตราความสำเร็จสูงกว่าโมเดลต้นไม้ตัดสินใจหรือโลจิสติกรีเกรสชั่นเดี่ยว |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
7 |
What is the primary geological characteristic of the Chattogram District that contributes to landslide susceptibility?
|
Folded anticlines and synclines with unconsolidated sedimentary rocks |
|
เขต Chattogram ตั้งอยู่ใน Chittagong Hill Tracts ซึ่งเป็นภูมิภาคที่มีลักษณะเป็นแนวต้านและแนวประสานที่ประกอบด้วยหินตะกอนที่รวมตัวกันไม่แน่น โครงสร้างทางธรณีวิทยานี้ทำให้พื้นที่มีแนวโน้มที่จะเกิดแผ่นดินถล่มเนื่องจากปัจจัยหลายประการ:
ทางลาดสูงชัน: เส้นแนวต้านและเส้นแนวโค้งที่พับไว้จะสร้างทางลาดชันที่เสี่ยงต่อการเกิดดินถล่มได้ง่ายกว่า
หินที่ไม่ถูกรวมตัว: หินตะกอนที่ไม่ถูกรวมตัวมีแนวโน้มที่จะถูกกัดเซาะและสภาพดินฟ้าอากาศมากกว่า ซึ่งอาจทำให้ความลาดชันอ่อนตัวลงและมีแนวโน้มที่จะพังทลายมากขึ้น
ปริมาณน้ำฝน: ภูมิภาคนี้ได้รับฝนตกหนัก ซึ่งอาจทำให้ดินอิ่มตัวและเพิ่มน้ำหนักของเนินเขา ทำให้มีแนวโน้มที่จะพังทลายลง |
ครงสร้างธรณีวิทยาและการถล่มดิน: การมีอยู่ของ anticlines และ synclines ที่พับซ้อน โดยเฉพาะหินตะกอนที่ไม่แข็งแรง สร้างสภาพแวดล้อมที่อ่อนแอต่อการถล่มดิน ความไม่มั่นคงของโครงสร้างเหล่านี้ รวมกับปัจจัยอื่น ๆ เช่น ฝนตกหนักและการกัดเซาะ จะเพิ่มความเสี่ยงต่อการถล่มดิน การเข้าใจโครงสร้างทางธรณีวิทยาช่วยในการประเมินและบรรเทาความเสี่ยงจากการถล่มดินได้อย่างมีประสิทธิภาพ |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
8 |
How do land use and land cover (LULC) changes influence landslide occurrences in the Chattogram District?
|
They increase landslide risk due to deforestation and construction |
|
การเปลี่ยนแปลงการใช้ที่ดินและสิ่งปกคลุมดิน (LULC) เป็นตัวขับเคลื่อนสำคัญที่ทำให้เกิดแผ่นดินถล่มในเขต Chattogram โดยเฉพาะอย่างยิ่ง กิจกรรมการตัดไม้ทำลายป่าและการก่อสร้างมีส่วนทำให้ความเสี่ยงต่อแผ่นดินถล่มเพิ่มขึ้นผ่านกลไกหลายประการ:
การตัดไม้ทำลายป่า: กำจัดพืชพรรณที่เกาะตัวดินเข้าด้วยกัน ส่งผลให้ดินพังทลายและความไม่มั่นคงเพิ่มขึ้น
การก่อสร้าง: เกี่ยวข้องกับการตัดเป็นทางลาด การสร้างสภาพที่ไม่มั่นคง และการเปลี่ยนแปลงรูปแบบการระบายน้ำตามธรรมชาติ
กิจกรรมเหล่านี้เมื่อรวมกับทางลาดชันและฝนตกหนักของภูมิภาค จะเพิ่มโอกาสเกิดแผ่นดินถล่มได้อย่างมาก |
ผลกระทบของการใช้ที่ดิน/การเปลี่ยนแปลงสิ่งปกคลุมดินต่อความอ่อนแอของดินถล่มในเขตเทศบาลรังกามาติ เขตรังกามาติ ประเทศบังคลาเทศ"
"การสำรวจความเชื่อมโยงของการเปลี่ยนแปลงสิ่งปกคลุมดินและแผ่นดินถล่มในพื้นที่เขาจิตตะกอง (CHT): มุมมองการสำรวจระยะไกล" |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
9 |
What percentage of total variance is explained by the first factor in the factor analysis discussed in the document?
|
51.29% |
|
ารวิเคราะห์ปัจจัยเป็นวิธีทางสถิติที่ใช้ในการระบุความสัมพันธ์พื้นฐานระหว่างตัวแปร เปอร์เซ็นต์ของความแปรปรวนทั้งหมดที่อธิบายโดยแต่ละปัจจัยแสดงถึงสัดส่วนของความแปรปรวนรวมในข้อมูลที่ถูกอธิบายโดยปัจจัยนั้น การที่ปัจจัยแรกอธิบายได้ถึง 51.29% ของความแปรปรวนแสดงให้เห็นว่าปัจจัยนี้มีความสำคัญมากในการอธิบายโครงสร้างของข้อมูล |
การวิเคราะห์ปัจจัย: เทคนิคนี้ใช้เพื่อระบุมิติหรือปัจจัยพื้นฐานที่อธิบายความสัมพันธ์ที่สังเกตได้ระหว่างตัวแปร เปอร์เซ็นต์ของความแปรปรวนที่อธิบายโดยแต่ละปัจจัยช่วยในการกำหนดความสำคัญสัมพัทธ์ของมัน ปัจจัยที่อธิบายความแปรปรวนมากกว่า 50% ถือว่ามีอิทธิพลสูงในการสรุปโครงสร้างของข้อมูล |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
10 |
According to the factor analysis, which factor is related to the cost and sufficiency of manure?
|
Factor 3: Correlation between manure sufficiency and expenses (cost) |
|
ปัจจัยนี้ระบุถึงความสัมพันธ์โดยตรงระหว่างความพร้อม (ความเพียงพอ) ของปุ๋ยคอกและต้นทุนที่เกี่ยวข้อง
โดยสรุปมิติทางเศรษฐกิจของการใช้ปุ๋ยคอก ซึ่งเป็นประเด็นสำคัญสำหรับเกษตรกรและผู้มีส่วนได้ส่วนเสียทางการเกษตร |
การตีความปัจจัยที่แน่นอนอาจแตกต่างกันไปขึ้นอยู่กับตัวแปรเฉพาะที่รวมอยู่ในการวิเคราะห์ปัจจัย จำเป็นต้องตรวจสอบการโหลดปัจจัยสำหรับตัวแปรแต่ละตัวเพื่อยืนยันการตีความนี้ |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
11 |
According to the factor analysis, which factor is related to the cost and sufficiency of manure?
|
Factor 3: Correlation between manure sufficiency and expenses (cost) |
|
การวิเคราะห์ปัจจัย (Factor Analysis) ใช้ในการระบุและตีความปัจจัยพื้นฐานที่อธิบายความสัมพันธ์ระหว่างตัวแปรต่าง ๆ ปัจจัยที่ 3 มุ่งเน้นที่ความสัมพันธ์ระหว่างความเพียงพอของปุ๋ยหมักและค่าใช้จ่ายที่เกี่ยวข้อง ซึ่งหมายความว่าปัจจัยนี้จะรวมถึงทั้งปริมาณความเพียงพอของปุ๋ยหมักและต้นทุนที่เกี่ยวข้องในการจัดหาและใช้ปุ๋ยหมัก |
การวิเคราะห์ปัจจัย: เทคนิคนี้ใช้ในการระบุปัจจัยพื้นฐานที่อธิบายความสัมพันธ์ระหว่างตัวแปรต่าง ๆ ปัจจัยที่ 3 มีการมุ่งเน้นไปที่การเชื่อมโยงระหว่างความเพียงพอของปุ๋ยหมักและต้นทุน ซึ่งช่วยในการเข้าใจความสัมพันธ์ระหว่างปริมาณปุ๋ยหมักที่เพียงพอและค่าใช้จ่ายที่เกี่ยวข้อง |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
12 |
What is the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy reported in the document?
|
0.800 |
|
การวัด KMO ใช้เพื่อประเมินความเหมาะสมของขนาดตัวอย่างสำหรับการวิเคราะห์ปัจจัย โดยมีค่าตั้งแต่ 0 ถึง 1 ซึ่งค่าที่ใกล้เคียง 1 จะบ่งชี้ว่าข้อมูลนั้นเหมาะสมสำหรับการวิเคราะห์ปัจจัย ขณะที่ค่าที่ใกล้เคียง 0 แสดงให้เห็นว่าการวิเคราะห์ปัจจัยอาจไม่เหมาะสม ค่า KMO ที่ 0.800 แสดงถึงระดับความเหมาะสมของการสุ่มตัวอย่างที่ดีสำหรับการทำการวิเคราะห์ปัจจัย |
การวัด KMO (Kaiser-Meyer-Olkin): การวัด KMO ใช้ในการประเมินความเหมาะสมของข้อมูลสำหรับการวิเคราะห์ปัจจัย ค่าที่สูงกว่าจะแสดงว่าตัวแปรมีความสัมพันธ์กันดีและเหมาะสมสำหรับการวิเคราะห์ปัจจัย ขณะที่ค่าที่ต่ำกว่าจะบ่งชี้ว่าข้อมูลอาจไม่เหมาะสมสำหรับการวิเคราะห์ดังกล่าว |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
13 |
Which of the following statements best describes the contribution of Factor 2 in the factor analysis?
|
It is related to soil analysis and plant nutrient utilization. |
|
จจัยที่ 2 มุ่งเน้นไปที่ด้านที่เกี่ยวข้องกับการวิเคราะห์ดินและการใช้ธาตุอาหารพืช ซึ่งหมายความว่าปัจจัยนี้รวมถึงตัวแปรที่วัดว่าลักษณะของดินและการจัดการธาตุอาหารพืชมีผลต่อการปฏิบัติทางการเกษตรอย่างไร |
การวิเคราะห์ปัจจัย: เทคนิคทางสถิติที่ใช้เพื่อระบุความสัมพันธ์พื้นฐานระหว่างตัวแปร โดยแต่ละปัจจัยจะจับมิติหรือแง่มุมเฉพาะของข้อมูล ในกรณีนี้ ปัจจัยที่ 2 มุ่งเน้นที่ลักษณะของดินและการจัดการธาตุอาหารพืช ซึ่งมีความสำคัญในการทำความเข้าใจผลผลิตทางการเกษตรและวิธีการปฏิบัติ |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
14 |
Which factor is primarily associated with limitations in the utilization of chemical fertilizer and manure according to the document?
|
Factor 4 |
|
ปัจจัยที่ 4 มุ่งเน้นไปที่ข้อจำกัดหรือข้อจำกัดในการใช้ปุ๋ยเคมีและปุ๋ยหมัก ซึ่งหมายความว่ามันครอบคลุมถึงปัญหาและความท้าทายที่เกี่ยวข้องกับการใช้และการจัดการปุ๋ยเหล่านี้ในการเกษตร |
การวิเคราะห์ปัจจัย: เทคนิคนี้ใช้ในการระบุปัจจัยพื้นฐานที่อธิบายความสัมพันธ์ระหว่างตัวแปรที่สังเกตได้ โดยปัจจัยจะถูกตีความตามเนื้อหาของมัน ปัจจัยที่ 4 ที่เน้นข้อจำกัดในการใช้ปุ๋ยเคมีและปุ๋ยหมัก ช่วยในการเข้าใจปัญหาและความท้าทายที่เกี่ยวข้องกับการใช้ปุ๋ยเหล่านี้ในทางการเกษตร |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
15 |
What is the percentage of variance explained by all four factors together?
|
51.295% |
|
ในการวิเคราะห์ปัจจัย เปอร์เซ็นต์ของความแปรปรวนที่อธิบายโดยชุดปัจจัยบ่งชี้ถึงระดับที่ปัจจัยเหล่านี้แทนที่ข้อมูลได้ดี เพียง 51.295% หมายความว่าปัจจัยทั้งสี่ร่วมกันอธิบายความแปรปรวนได้มากกว่าครึ่งหนึ่งของความแปรปรวนทั้งหมดในชุดข้อมูล ซึ่งสะท้อนถึงโครงสร้างพื้นฐานที่สำคัญ |
ในการวิเคราะห์ปัจจัย เปอร์เซ็นต์ของความแปรปรวนที่อธิบายโดยชุดปัจจัยบ่งชี้ถึงระดับที่ปัจจัยเหล่านี้แทนที่ข้อมูลได้ดี เพียง 51.295% หมายความว่าปัจจัยทั้งสี่ร่วมกันอธิบายความแปรปรวนได้มากกว่าครึ่งหนึ่งของความแปรปรวนทั้งหมดในชุดข้อมูล ซึ่งสะท้อนถึงโครงสร้างพื้นฐานที่สำคัญ |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
16 |
What is the highest mean value for the propositions used in the factor analysis, according to the document?
|
3.000 |
|
ในการวิเคราะห์ปัจจัย ค่าความเฉลี่ยของข้อเสนอหรือตัวแปรสามารถบ่งชี้ถึงการตอบสนองเฉลี่ยหรือระดับความเห็นพ้องทั่วทั้งชุดข้อมูล ค่าเฉลี่ยที่ 3.000 แสดงถึงคะแนนเฉลี่ยสูงสุดสำหรับข้อเสนอในบริบทนี้ |
การวิเคราะห์ปัจจัย: ในบริบทนี้ ค่าความเฉลี่ยของข้อเสนอช่วยในการประเมินระดับการตอบสนองหรือความเห็นพ้องเฉลี่ยกับข้อเสนอที่ใช้ในการวิเคราะห์ ค่าความเฉลี่ยสูงสุดบ่งชี้ถึงข้อเสนอที่มีการตอบสนองเฉลี่ยสูงสุดจากผู้เข้าร่วมหรือจุดข้อมูล |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
17 |
What was the minimum magnitude for the factor loads considered for interpreting the analysis results in the factor analysis?
|
0.50 |
|
โหลดปัจจัยแสดงถึงความสัมพันธ์ระหว่างแต่ละตัวแปรกับปัจจัยพื้นฐาน ค่าต่ำสุดที่ 0.50 มักถูกใช้เพื่อให้แน่ใจว่าตัวแปรมีความสัมพันธ์ที่สำคัญกับปัจจัยที่กำลังวิเคราะห์ ค่านี้ช่วยในการเลือกตัวแปรที่มีส่วนร่วมอย่างมีความหมายกับปัจจัยและในการตีความผลลัพธ์อย่างถูกต้อง |
การวิเคราะห์ปัจจัย: โหลดปัจจัยใช้เพื่อเข้าใจความแข็งแกร่งของความสัมพันธ์ระหว่างตัวแปรและปัจจัย ค่าที่ 0.50 หรือสูงกว่าจะบ่งชี้ถึงความสัมพันธ์ที่ปานกลางถึงแข็งแกร่ง ซึ่งเหมาะสมสำหรับการตีความและช่วยให้แน่ใจว่าตัวแปรมีส่วนร่วมอย่างมีความหมายกับปัจจัย |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
18 |
According to the document, how many factors were initially considered before deciding on the final number?
|
5 |
|
ในการวิเคราะห์ปัจจัย เป็นการปฏิบัติทั่วไปที่จะสำรวจจำนวนปัจจัยต่าง ๆ ในระยะแรกและจากนั้นจะปรับปรุงการเลือกตามเกณฑ์เฉพาะ เช่น ค่า eigenvalues, scree plots, และสัดส่วนของความแปรปรวนที่อธิบาย โดยเอกสารระบุว่ามีการพิจารณาห้าปัจจัยในระยะแรกก่อนที่จะตัดสินใจเลือกจำนวนปัจจัยที่ควรรักษาไว้สำหรับการวิเคราะห์ |
การวิเคราะห์ปัจจัย: วิธีการทางสถิติที่ใช้ในการระบุความสัมพันธ์พื้นฐานระหว่างตัวแปร โดยการจัดกลุ่มตัวแปรเป็นปัจจัย การพิจารณาจำนวนปัจจัยหลาย ๆ ตัวช่วยในการตัดสินใจว่าควรคงจำนวนปัจจัยไว้กี่ตัวโดยอิงจากพลังการอธิบายและความเกี่ยวข้องกับข้อมูล |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
19 |
Which method was used for rotation in the factor analysis described in the document?
|
Varimax |
|
Varimax เป็นวิธีการหมุนที่ใช้บ่อยในวิเคราะห์ปัจจัย เป็นเทคนิคการหมุนแบบออร์ธอกอนัล (orthogonal) ที่มุ่งเน้นการทำให้การตีความปัจจัยง่ายขึ้น โดยการเพิ่มความแปรปรวนของการโหลดปัจจัยของแต่ละปัจจัยกับตัวแปร วิธีนี้ช่วยให้โครงสร้างของปัจจัยมีความชัดเจนและเข้าใจได้ง่ายขึ้น |
การวิเคราะห์ปัจจัย: วิธีการหมุน เช่น Varimax ถูกใช้เพื่อปรับทิศทางของปัจจัยเพื่อให้ได้โครงสร้างปัจจัยที่เรียบง่ายและเข้าใจได้ง่ายขึ้น การหมุน Varimax โดยเฉพาะมุ่งเน้นการเพิ่มความแปรปรวนของการโหลดปัจจัย และทำให้การตีความปัจจัยเป็นเรื่องที่ตรงไปตรงมามากขึ้นก |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
20 |
Based on the factor analysis, how is Factor 1 defined in the document?
|
Chemical fertilizer and manure utilization level and efficiency perception |
|
ปัจจัยที่ 1 ในการวิเคราะห์ปัจจัยแทนที่โครงสร้างพื้นฐานหรือธีมที่อธิบายความแปรปรวนร่วมกันในกลุ่มตัวแปรที่จัดกลุ่มไว้ภายใต้ปัจจัยนี้ ในกรณีนี้ ปัจจัยที่ 1 เกี่ยวข้องกับระดับการใช้และการรับรู้ถึงประสิทธิภาพที่เกี่ยวข้องกับปุ๋ยเคมีและปุ๋ยหมัก |
การวิเคราะห์ปัจจัย: การวิเคราะห์ปัจจัยช่วยในการระบุและกำหนดปัจจัยที่จับภาพรูปแบบพื้นฐานในข้อมูล แต่ละปัจจัยจะเชื่อมโยงกับชุดของตัวแปรที่มีธีมหรือโครงสร้างร่วมกัน ทำให้การตีความชุดข้อมูลที่ซับซ้อนเป็นเรื่องง่ายขึ้น ปัจจัยที่ 1 ในบริบทนี้มุ่งเน้นไปที่วิธีการใช้และการรับรู้ถึงประสิทธิภาพของปุ๋ยเคมีและปุ๋ยหมัก |
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|